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It is shown that a k� =0, A2u distortion of the terbium tetrahedral network in Tb2Ti2O7 causes the apparent
isolation of single tetrahedra as seen in neutron scattering studies. Single tetrahedron collective spin states,
rather than individual spins, account for the main features of the spin liquid state, namely, fluctuating local
moments and the absence of long range order. Singlet and doublet collective spin ground states are considered.
An effective interaction between tetrahedra on the fcc lattice is derived and found to be weak and anisotropic.

DOI: 10.1103/PhysRevB.78.094418 PACS number�s�: 75.10.Jm, 75.25.�z

Tb2Ti2O7 is an example of three dimensional geometric
frustration because the magnetic Tb3+ ions are arranged on a
corner-sharing tetrahedral network. It has a spin liquid phase,
characterized by the absence of long range correlations and
rapidly fluctuating local magnetic moments, which persist
down to at least 50 mK.1,2 This paper is devoted to another
mysterious feature of Tb2Ti2O7, namely, the apparent isola-
tion of single tetrahedra from the tetrahedral network. Such
isolation is suggested by neutron scattering experiments,3

which find that magnetic correlations beyond the size of a
single tetrahedron are absent,1 and exact calculations of spin
eigenstates on single tetrahedra reproduce well diffuse neu-
tron scattering patterns.4,5

A reasonable description of the exchange interaction
across the four Tb sites on a single tetrahedron in Tb2Ti2O7
has been obtained only recently.4,5 The crystal electric field
�CEF� ground state of the Tb ions is a doublet, giving rise to
a classical picture of Ising-like spins constrained to point into
or out of the four vertices of the tetrahedron. However, mix-
ing with higher CEF levels tends to restore transverse spin
components, negating the classical picture. The resulting
ground state resembles neither the ferromagnetic “spin-ice”
states, which have two spins pointing inside the tetrahedron
and two pointing out, nor the antiferromagnetic “all-in or
all-out” states. Instead it is a linear combination of various
states and with no classical analog.

The issue of how to deal with the entire tetrahedral net-
work, and why the single tetrahedron picture is valid, re-
mains an outstanding problem. Because of the connectivity
of the tetrahedral network, eigenstates of a single tetrahedron
are not in general eigenstates of the entire tetrahedral net-
work. This paper offers a solution to this paradox, which
involves symmetry breaking in the form of a lattice distor-
tion.

Lattice distortions are often invoked in theory as a way to
relieve geometrical frustration and arrive at an ordered state,6

and usually these involve a change of the crystal system, for
example, from cubic to tetragonal. In fact, there is evidence
that such a transition occurs in Tb2Ti2O7 below any acces-
sible temperature.7 In this paper, we propose another kind of
lattice distortion, one which lowers the point group symme-
try but leaves the crystal system unchanged. This distortion
does not remove the frustration completely but it does serve
to isolate single tetrahedra. Collective spin states on single

tetrahedra then replace individual spins as the fundamental
basis for excitations and longer range effective interactions.
The main features of the spin liquid phase follow from this
scenario.

Pyrochlore crystals such as Tb2Ti2O7 belong to the cubic

space group Fd3̄m �Oh
7, No. 227�, in which both Tb and Ti

ions form separate corner-sharing tetrahedral networks. Here
we are only concerned with the magnetic Tb3+ ions. The
tetrahedra appear in two different orientations �A and B�,
which alternate in the tetrahedral network. A tetrahedron of
either type comprises the primitive unit cell. Thus, the set of
all A tetrahedra forms a face-centered cubic �fcc� lattice, as
does the set of all B tetrahedra. The set of A tetrahedra is
related to the set of B tetrahedra by the � and � /2 screw

rotation and inversion elements of Fd3̄m.
We begin by considering the nearest neighbor isotropic

�Heisenberg� exchange interaction. The Hamiltonian for the
entire tetrahedral network can be split into two terms,

Hex = JHA + JHB, �1�

where J is the exchange coupling constant,

HA = �
k

X�Ak� �2�

and X�Ak� is the exchange interaction over the kth A tetrahe-
dron, and HB is the exchange interaction over the set of B
tetrahedra. In either case, the sum over k is a sum over fcc
lattice sites. The exchange interaction is

X = �
�ij�

J�i · J� j , �3�

where the sum runs over four sites on a given tetrahedron.
The eigenstates of HA and HB are known and are simply the
direct products across the tetrahedra of the eigenstates for a
single tetrahedron, which are given in Ref. 4 and described
below. However, in general, �HA ,HB��0; therefore, HA and
HB do not have common eigenstates with each other or with
Hex �an exception to this is discussed below�. This is in ap-
parent contradiction with the results of experiments, which
agree very well with the single tetrahedron picture.1,4,5 This
suggests that Hex in Eq. �1� should be replaced by an effec-
tive Hamiltonian8
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Hef f = JAHA + JBHB, �4�

where one of the couplings is much larger than the other. The
difference between the exchange couplings JA and JB could
originate from a structural distortion, which makes the A
tetrahedra smaller and the B tetrahedra larger, thus, JA

�JB or vice versa. Such a distortion is a k� =0, A2u mode of
the Tb ions, which reduces the space group symmetry from

Fd3̄m to F4̄3m.9 This new space group is compatible with an
otherwise unexplained �0,0,2� Bragg peak observed in neu-
tron scattering measurements.10 If present, domains could
produce isolated spins along their boundaries, possibly con-
tributing to observed glassy behavior.2,11,12

Fits to the dominant �3,1,1�, �2,2,2�, �1,1,1�, and �2,2,0�
Bragg peaks are in good agreement with the pyrochlore

space group Fd3̄m.10 Therefore, it is reasonable to assume
that the much smaller �0,0,2� peak is due to a small distortion

of Fd3̄m. The space groups which are compatible with all
five of the peaks, are cubic, and which are also subgroups of

Fd3̄m are F4̄3m �No. 216, Td
2�, P4̄3m �No. 215, Td

1�, F23
�No. 196, T2�, P23 �No. 195, T1�, and P213 �No. 198, T4�.
Among these, F4̄3m has the highest symmetry and all are

subgroups of F4̄3m. Thus, it is strongly indicated that the

space group of Tb2Ti2O7 is in fact F4̄3m. The k� =0, A2u

displacement mode, which gives rise to F4̄3m, can occur for
the Tb, Ti, or O ions,9 although physical considerations point
in favor of Tb displacements, as discussed above, or O dis-
placements, due to the role that the O ions play in mediating
the exchange interaction. Whether or not the �0,0,2� peak is
present at all temperatures or appears due to some kind of
exotic “spin Jahn-Teller” effect, remains to be investigated.13

The ratio JA /JB varies with the size of the lattice distor-
tion. The localized nature of the Tb 4f electrons ensures that
overlap integrals contributing to the exchange constants will
be very sensitive to changes in relative distances and this is
evidenced by a very large magnetostriction.14 Therefore, it is
possible that even a very small lattice distortion could pro-
duce a large difference between JA and JB.

Assuming that �JA�� �JB�, we will find the ground state of
HA and then consider HB as a perturbation. In order to do
this, we must first describe the collective spin states of a
single tetrahedron. A tetrahedron has four magnetic ions at
its vertices, each of which has a local site symmetry of D3d.
Following the conventions established in Ref. 4, we label the
ions 1, 2, 3, and 4, where their C3 axes point in the direc-
tions �1,1,1�, �−1,−1,1�, �−1,1 ,−1�, and �1,−1,−1�,
respectively. Tb3+ ions have a total angular momentum of
J=6, but the 13-fold degeneracy is split by the crystal elec-
tric field into 5 singlets and 4 doublets; one of the
doublets is the ground state. We take the ground state
as15 �� �= �0.13��5��0.13��1�−0.95��4�, where the
quantization axis points in the direction of the C3
axis for each Tb ion. There are then 16 collective spin
states on a tetrahedron, which can be written as
��� ���= �� �1 � �� �2 � �� �3 � �� �4, where the sub-
scripts indicate the site on the tetrahedron. Symmetry con-
siderations predict that interactions will split the 16 states

into a singlet, three doublets, and three triplets,4 which are
complicated linear combinations of the basis states
��� ���.

The ground state spin configuration of Tb ions on a single
tetrahedron for isotropic antiferromagnetic exchange is a
doublet,4 which we write as �E��. Otherwise, the ground
state depends on the details of the anisotropy. An anisotropic
interaction �equivalent to including nearest neighbor dipole-
dipole interactions� was considered in Ref. 5 and the singlet
was found to be the ground state. A triplet ground state could
also yield patterns similar to what are found in experiment.4

In the following, we will consider the doublet and the singlet
as possible ground states on a single tetrahedron.

The ground state of HA is constructed by taking the direct
product of the single tetrahedron ground states across the A
tetrahedra. If the tetrahedron ground state is the singlet

�A1� = ��+ + − − � + �− − + +� + �+ − + − � + �− + − +�

+ �+ − − +� + �− + + − ��/	6, �5�

then the ground state of HA can be written as �k�A1�k, where
k indexes tetrahedra, that is, fcc lattice sites. This state
clearly has long range correlations but they will be undetect-
able in static neutron scattering measurements, in agreement
with experiment.1 This is because neutron scattering detects
magnetic correlations, which are proportional to the matrix

elements ���J�i������J� j���, where i and j are Tb sites and �
and � are eigenstates of HA, which vanish unless i and j
belong to the same A tetrahedron. On the other hand, higher
order correlations, beginning with quadrupolar, will exist be-
tween tetrahedra. Thus, the state �k�A1�k is not a true spin
liquid. The excitation spectrum of HA will be gapped, with
an energy of the order 0.1
1 K,5 corresponding to the sepa-
ration between �A1� and the first-excited state on the tetrahe-
dron.

If the tetrahedron ground state is a doublet �E��, then the
ground states of HA can be written as �k�E	�k. The ground
state is highly degenerate. One way of viewing the degen-
eracy is to note that the state at each site can be any complex
linear combination of the doublet states �E��. This SU�2�
freedom on each fcc site leads to the absence of correlations
of any kind beyond the size of a single tetrahedron. How-
ever, interactions coming from the perturbation HB will limit
this freedom. Ultimately, we find a system of weakly inter-
acting tetrahedra arranged on a fcc lattice �which is also frus-
trated�. If the tetrahedron ground state is a triplet, then there
will be a SU�3� symmetry on each lattice site, which could
also be limited by weak interactions.

In order to calculate the effect of the perturbation HB, we
first need to examine in detail the exchange interaction over
a single tetrahedron and its eigenstates. A useful representa-
tion of the exchange interaction over a single tetrahedron is
given in Ref. 4, in which the angular momentum operators
are expressed in terms of local coordinate axes �indicated by
subscripts� such that the local z axis for each Tb ion points in
the direction of its C3 axis. Local x and y axes have also been
implicitly selected. The result is written in Table I. Only
local coordinate operators are used in the following. The
symmetry of the crystal is octahedral, which permits three
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separate invariant terms in the exchange interaction, J1X1,
J2X2, and J3X3, where J1,2,3 are different exchange cou-
plings for each term, and X1,2,3 are the sums of all the terms
in the second, third, and fourth columns, respectively, of
Table I. There is actually a fourth invariant allowed under Oh
symmetry �X3 is split�, which we do not consider here, al-
though the following discussion can be easily generalized.
The isotropic exchange interaction is the sum of all three
terms with J1=J2=J3. In the following, we will assume that
the exchange interaction is antiferromagnetic.

The matrix elements for Jz,� are

�� �Jz� � � = � j , �6�

�� �J�� � � = t . �7�

The parameters j and t serve as a very useful characterization
of single-ion doublet spin states. For J=1 /2 ions, j=1 /2 and
t=1, while for other 1/2-integral spins, j and t may be quite
different. The parameter t equals zero for integral spins �as
for the Tb3+ ion� but may acquire a significant nonzero value
due to mixing with higher crystal electric field levels.5 A
comparison between theoretical and experimental diffuse
neutron scattering patterns suggests that t is larger than j in
Tb2Ti2O7.4,5 Thus, in our initial approximation, we will as-
sume that j=0; then the only term in the exchange interac-
tion with nonzero matrix elements is X3.

The ground state of X3 is the doublet4,16

�E�� = 	3/5�E�
�1�� − 	2/5�E�

�3�� , �8�

where

�E+
�1�� = �+ + + +�, �E−

�1�� = �− − − − � , �9�

�E+
�3�� = ��+ + − − � + 
�+ − + − � + 
2�+ − − +� + �− − + +�

+ 
�− + − +� + 
2�− + + − ��/	6, �10�

�E−
�3�� = ��E+

�3����, �11�

and 
=exp 2i� /3. First order corrections due to HB are
found by calculating the matrix elements of HB between the
degenerate ground states of HA. We will express the final
result as an effective interaction between the ground state

doublets on neighboring tetrahedra. Recall that HB is the ex-
change interaction summed over all B tetrahedra. It consists

of terms of the form J�i ·J� j, where i and j are nearest neigh-
bors but are found on different, neighboring A tetrahedra.
Nearest neighbor A tetrahedra share exactly one pair of near-
est neighbor magnetic ions. Considering only the X3 part of
the exchange interaction, we find that all of the ground state
matrix elements vanish17 because each term in HB raises or
lowers at most one site in any A tetrahedron, and the result is
orthogonal to all of the ground states. Therefore, to first order
in JB /JA and zeroth order in j / t, the A tetrahedra are non-
interacting.

Now we consider finite values of j / t by including X1 and
X2 in the exchange interaction. This will add mixtures of

�E+
�2�� = ��+ − − − � + �− + − − � + �− − + − � + �− − − +��/2,

�12�

�E−
�2�� = ��− + + +� + �+ − + + +� + �+ + − +� + �+ + + − ��/2,

�13�

and

�E�
�3��� = 	2/5�E�

�1�� + 	3/5�E�
�3�� �14�

to �E��. The general form is �E��=��E�
�1��+��E�

�2��+�E�
�3��.

To find the effective interaction between tetrahedra, consider
two neighboring A tetrahedra with Tb sites numbering 1, 2,
3, and 4 on the first tetrahedron and 5, 6, 7, and 8 on the
second. Projecting all possible ground states of HA onto the
subspace of these two tetrahedra yields four states of the
form �E� ;E��. Suppose that sites 1 and 6 are nearest neigh-
bors and that the C3 axis of site 6 points in the same direction

as that of site 2. Then J�1 ·J�6 is a term in HB and takes the

same form as J�1 ·J�2. The effective interaction between tetra-
hedra is found by calculating the 16 matrix elements

�E� ;E��J�1 ·J�6�E� ;E��. The nonzero matrix elements are

�E+;E��X1�E+;E�� = �E−;E��X1�E−;E�� = � �2/3,

�E+;E��X2�E+;E�� = �E�;E+�X2�E�;E+� = − ��	2/3,

�E−;E��X2�E−;E�� = �E�;E−�X2�E�;E−� = ��	2/3,

TABLE I. The exchange interaction over a single tetrahedron expressed in terms of local coordinates for each Tb ion. The first column
lists the terms in the exchange interaction over a single tetrahedron. In each row, the first entry is the sum of the middle three. The isotropic
exchange is the sum of all the terms in the middle three columns, and may be divided into three anisotropic terms X1, X2, and X3, which are
the sum of all the terms in each of the middle three columns. The last column lists the bond direction for each term. 
=exp�2i� /3�.

Term X1 X2 X3 Bond

J�1 ·J�2 − 1
3J1zJ2z −

	2
3 �J1z�J2++J2−�+ �J1++J1−�J2z�

1
3 �J1+J2++J1−J2−�− 1

6 �J1+J2−+J1−J2+� �1/2,1/2,0�

J�3 ·J�4 − 1
3J3zJ4z −

	2
3 �J3z�J4++J4−�+ �J3++J3−�J4z�

1
3 �J3+J4++J3−J4−�− 1

6 �J3+J4−+J3−J4+� �−1 /2,1 ,2 ,0�

J�1 ·J�3 − 1
3J1zJ3z −

	2
3 �J1z�
J3++
2J3−�+ �
J1++
2J1−�J3z�

1
3 �
2J1+J3++
J1−J3−�− 1

6 �J1+J3−+J1−J3+� �1/2,0,1/2�

J�2 ·J�4 − 1
3J2zJ4z −

	2
3 �J2z�
J4++
2J4−�+ �
J2++
2J2−�J4z�

1
3 �
2J2+J4++
J2−J4−�− 1

6 �J2+J4−+J2−J4+� �−1 /2,0 ,1 /2�

J�1 ·J�4 − 1
3J1zJ4z −

	2
3 �J1z�
2J4++
J4−�+ �
2J1++
J1−�J4z�

1
3 �
J1+J4++
2J1−J4−�− 1

6 �J1+J4−+J1−J4+� �0,1/2,1/2�

J�2 ·J�3 − 1
3J2zJ3z −

	2
3 �J2z�
2J3++
J3−�+ �
2J2++
J2−�J3z�

1
3 �
J2+J3++
2J2−J3−�− 1

6 �J2+J3−+J2−J3+� �0,−1 /2,1 /2�
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�E+;E+�X3�E−;E−� = �E−;E−�X3�E+;E+� = �2/3,

�E+;E−�X3�E−;E+� = �E−;E+�X3�E+;E−� = − �2/6,

where �= j��2−�2 /2� and �= t��. From these matrix ele-
ments we can infer that the effective interaction between
tetrahedra is anisotropic in general and can be divided into
three separate terms,

Htetra = J1�X1 + J2�X2 + J3�X3, �15�

where Xi now operates on tetrahedral ground state doublets
as follows. There are four invariant operators on the fcc lat-
tice that are directly related to the four invariants on the
single tetrahedron �note that, as explained above, only three
have been considered here�. The bond direction between a
tetrahedron and each of its twelve nearest neighbors can be
defined by the bond direction between the nearest neighbor
ion sites on neighboring tetrahedra. Six different bond direc-
tions are present. The bond direction determines the corre-
spondence between rows in Table I and terms in the effective
interaction between tetrahedra. Assuming that matrix ele-
ments of the tetrahedron operators are �E��Jz�E��= �1 and
�E��J��E��=1, we find J1�=J1�2, J2�=J2��, and J3�=J3�2.
Higher order corrections arising from mixing via HB between
the single tetrahedron ground states �E�� and excited states
will further renormalize J1�, J2�, and J3�. The renormalization
of the coupling constants in Eq. �15� implies that even if the
underlying exchange interaction is isotropic, the effective ex-
change interaction between tetrahedra is anisotropic. In a
similar fashion, the effective interaction between tetrahedra
with triply degenerate ground states can also be found.

Anisotropy in Htetra may assist long range ordering of the
tetrahedra. However, at temperatures so far obtained, there is
no evidence from neutron scattering for any kind of intertet-
rahedra correlations. The inelastic neutron scattering func-
tion is proportional to18

I�q� � �
m

e−Em/kBT�
i,j

�
a,b

�
n

�ij − q̂iq̂j��m�Ja
i �n�

��n�Jb
j �m�eiq·�rb−ra�, �16�

where a and b are the four magnetic ion sites at the corners
of a tetrahedron and n and m are eigenstates of the system.
The angular momentum operators Ji refer to the global coor-
dinate system �indicated by superscripts�. This formula
yields patterns which are linear combinations of the follow-
ing functions:

f1�h,k,l� =
1

h2 + k2 + l2�hk sin
�h

2
sin

�k

2
+ kl sin

�k

2
sin

�l

2

+ hl sin
�h

2
sin

�l

2
 , �17�

f2�h,k,l� =
1

h2 + k2 + l2�h2 cos
�k

2
cos

�l

2
+ k2 cos

�h

2
cos

�l

2

+ l2 cos
�h

2
cos

�k

2
 , �18�

f3�h,k,l� =
1

h2 + k2 + l2�h2 cos
�h

2
�cos

�k

2
+ cos

�l

2
�

+ k2 cos
�k

2
�cos

�h

2
+ cos

�l

2
�

+ l2 cos
�l

2
�cos

�h

2
+ cos

�k

2
� . �19�

Intertetrahedron correlations would be manifested in the ap-
pearance of smaller period �in k space� contributions to the
scattering patterns. If present, these could help to constrain
the effective interaction between tetrahedra. However, their
absence indicates that intertetrahedra interactions are indeed
weak.

Finally, let us contrast our results to situations in which
the commutator �HA ,HB� does vanish, allowing common
eigenstates of HA, HB, and Hex. Nonzero terms in the com-
mutator �HA ,HB� arise from terms proportional to X2 and X3

in HA and HB. Thus, if the exchange interaction is highly
anisotropic and only X1 appears or when the parameter t
vanishes, then �HA ,HB�=0, and the eigenstates of H, HA, or
HB are the sixteen basis states ��� ���. If the sign of J1 is
positive, then the ground states of a single tetrahedron are the
antiferromagnetic states �++ ++� and �−−−−�; otherwise, the
ground state has a sixfold degeneracy, �++−−�, �−−++�,
�+−+−�, �−+−+�, �+−−+�, and �−+ +−�. These situations can
each be defined by rules: “all-in or all-out” in the former and
“two in/two out” �spin-ice rule� in the latter. Ground states of
HA are again found by taking the direct product of ground
states over the A tetrahedra. A ground state of HA will be an
eigenstate of HB but, in general, it will not be a ground state
unless the appropriate ground state rule is satisfied on all of
the B tetrahedra too. The distinguishing feature between the
special case when �HA ,HB�=0 and the general case is the
form that the eigenstates take. When the commutator is non-
zero, the eigenstates of the single tetrahedron are necessarily
entangled, that is, they must be linear combinations of the
basis states ��� ���, which leads to fluctuating local mo-
ments found in Tb2Ti2O7.

To summarize, we have shown that a k� =0, A2u lattice
distortion can account for the observed single tetrahedron

behavior. This distortion results in a space group of F4̄3m,
which is compatible with a �0,0,2� Bragg peak observed by
neutron scattering10 and the loss of inversion center recently
observed in Raman scattering.19 The eigenstates of the sys-
tem are then direct products over the fcc lattice of the single
tetrahedron eigenstates. The effective interaction between
tetrahedra is weak and anisotropic.
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